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Highlights

We propose a new approach for testing complex treatment effects that
combines modern machine learning (ML) tools with

randomization tests.

1. Complex effects: We test complex effects such as heterogeneous
effects and spillovers.

2. ML test statistic: We leverage ML-based test statistics, harnessing
their predictive power.

3. Finite-sample validity: Randomization-based testing framework
offers finite-sample validity.

Setup

Data
Z = (Z1, . . . , Zn) ∼ P as binary treatments.
Y = (Y1, . . . , Yn) as vector of outcomes.
X1, . . . , Xn as length-p vector of covariates.
G: n × n adjacency matrix.

General model

Yi = fbase(Xi) + τZi

+ fhet(Xi)Zi + fsp(Xi, Z−i) + εi

fbase, fhet, and fsp capture baseline, heterogeneous, and spillover
effects, respectively.

Hypotheses of interest
1. Global null of no treatment effect

Hglob
0 : τ = 0, fhet = 0, fsp = 0,

Hglob
1 : τ 6= 0, fhet 6= 0, fsp 6= 0.

2. Heterogeneous treatment effects

Hhet
0 : τ 6= 0, fhet = 0, fsp = 0,

Hhet
1 : τ 6= 0, fhet 6= 0, fsp = 0.

3. Spillover effects

Hsp
0 : τ 6= 0, fhet 6= 0, fsp = 0,

Hsp
1 : τ 6= 0, fhet 6= 0, fsp 6= 0.

Backbone: Randomization inference

Classical Fisher randomization test (FRT)
1. Compute observed value tobs = tn(Z, Y, X)
2. Draw Z ′ ∼ P and impute Y = Y (Z ′)
3. Obtain p-value

p = E[1{tn(Z ′, Y, X) > tobs)}],
Expectation is with respect to randomization distribution P .

Conditional FRT
e.g., Basse et al. (2019), Athey et al. (2018)

Performed on a subset called “focal units”
Select focal units I, draw Z ′ ∼ P with Z ′

i = Zi for i ∈ I, and apply
classical FRT

→ Exact test under interference.

ML-FRT procedure

Procedure

1. Fit ML models: Fit two ML models, with (full) and without
(reduced) complex effect.

2. Compute CV-statistic: Define test statistic as difference in
cross-validated errors:

tn = CVfull − CVreduced.

3. Obtain p-value: Apply randomization test.

Under each hypothesis, ML-FRT procedure reduces to:
Global null: Classical FRT with test statistic

CV(Y ; X, Z) − CV(Y ; X).
→ Captures variation explained by Z.
Heterogeneity: Let p(τ ): p-value from global null with augmented out-
come Y τ = Y − τZ. Define

pγ := sup
τ∈CIγ

p(τ ) + γ, γ ∈ (0, α),

CIγ: (1 − γ)-significant confidence interval for ATE.
→ Captures variation explained by fhet.
Interference: Conditional FRT with test statistic

CV(Y ; Z, [GZ]I, X) − CV(Y ; Z, [G]IZI, X).
→ Captures variation explained by non-focal units.

Validity & Power

Validity
Under Hh

0 with h ∈ {glob, het, sp}, p-value of ML-FRT satisfies
P(pval ≤ α) ≤ α,

for any α ∈ [0, 1] and any n > 0.
Power analysis

Type-II error under Hglob
1 .

Applicable to general models with function class F .

Suppose the data are i.i.d. and a “boundedness” assumption holds. If
∆ > 0, our type II error satisfies

P(pval > α) = O
(

k exp
(

−0.003n∆2

kM 4

))
.

k: number of folds in cross-validation.
M : boundedness constant.
∆: “signal-to-noise” difference

:= inf
f∈F

E(Yi − f (Xi, Z ′
i))2 − inf

f∈F
E(Yi − f (Xi, Zi))2

︸ ︷︷ ︸
improvement in prediction

− 8Rn−n/k(F)︸ ︷︷ ︸
estimation error

Rn(F): Rademacher complexity

:= 1
n

E
X,Z,σ

sup
f∈F

∣∣∣∣∣∣
n∑

i=1
σif (Xi, Zi)

∣∣∣∣∣∣


→ measures the “size” of F .

better prediction ⇒ larger ∆ ⇒ higher power!

τS 0.2 0.4 0.5 1.0

FML
Power 0.200 0.850 0.950 1.000

∆̂ 0.053 0.234 0.379 1.939

FLM
Power 0.075 0.225 0.150 0.325

∆̂ 0.005 0.037 0.046 0.371

Table 1. Power and ∆̂ under different alternatives.

Example 1: Testing for heterogeneity

Bernoulli design with n = 100, p = 5, Xi
iid∼ N (0, Σ), where Σ is a randomly

generated correlation matrix. Assume no interference (fsp = 0) and εi
iid∼

N (0, 1). We test heterogeneity by varying τS.
Simple: τ = 0,

fbase(Xi) = −0.05X>
i β0, β0 ∼ U([1, 5]d),

fhet(Xi) = 0.5τSX>
i β1, β1 ∼ U([1, 5]d).

Complex: τ = 1,
fbase(Xi) = −0.5(21{Xi1 < 0.5} − 31{Xi2 > −0.5}),
fhet(Xi) = τS(21{Xi1 < 0.5} − 31{Xi2 > −0.5}).
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Figure 1. (left) Rejection rates under the “simple” DGP (right) rejection rates under the “complex” DGP.
We compare our methods to the variance ratio (“VR”) and shifted KS statistic (“SKS”) from Ding et al.
(2016).

All methods achieve Type-I error control.
ML-FRT showcases highest power under complex heterogeneous effects.

Example 2: Testing for spillovers

Two-stage experiment from Basse and Feller (2018) under clustered inter-
ference with n = 300 and 20 clusters. Consider p = 2 and Xi

iid∼ N (0, I2).
Cluster-level potential outcomes:
Yci,0 ∼ N (2, 0.12) and Yci,2 ∼ N (Yci,0 + 1.5, 0.12).
Individual-level potential outcomes:

Simple: Constant spillover effects
Yi(0) ∼ N (Yci,0, 0.52), Yi(1) = Yi(0) + τS, Yi(2) ∼ N (Yci,1, 0.52).
Complex: Nonlinear spillover effects
Yi(0) ∼ N (Yci,0, X2

i1/32),
Yi(1) = Yi(0) + τS(31{Xi2 > −0.5} − 21{Xi1 < 0.5}),
Yi(2) ∼ N (Yci,2, X2

i2/22).

→ fbase(Xi) = 2, τ = 1.5, fhet = 0, with different fsp.
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Figure 2. (left) Rejection rates under the “simple” DGP (right) rejection rates under the “complex” DGP.
We compare our methods to the edge-level constrast statistic (“ELC”) from Athey et al. (2018).

All methods display similar power under “simple”.
Only ML-FRT maintains power under “complex”.
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